
Parallelization of filter BSS/WSS on GPGPU for classifying cancer subtypes with SVM

Iliana Castro-Liera, J. Enrique Luna-Taylor, Jacob E. Merecías-Pérez, Germán Meléndrez-Carballo
Departamento de Sistemas y Computación, Instituto Tecnológico de La Paz,

Boulevard Forjadores No. 4720, La Paz, B.C.S., México;
icastro@itlp.edu.mx, eluna@itlp.edu.mx

Abstract

A parallel version of BSS/WSS (Between Sum Square-

BSS, Within Sum Square-WSS) filter using GPGPU

(General Purpose Graphics Processing Units) is

proposed. The application processes genetic expression

data to select statistically relevant genes. A SVM

(Support Vector Machine) is applied on the expression

data of genes selected by the filter, to diagnose cancer.

With the use of this combination of algorithms, a

success rate of 92% in the diagnosis was achieved. With

the parallel implementation on GPGPU with CUDA

technology, a dramatic reduction of execution time of

approximately 18 times compared to the sequential

implementation on CPU was achieved.

Keywords: genetic expression, Support Vector

Machine, parallel programming, GPGPU, CUDA.

I. INTRODUCTION

Cancer is a serious and complex problem that has

caught the attention of the scientific community and is

among the 10 main causes of death in the world [1].

Among the many fronts and efforts that are being made

to address this problem, exists the development of

algorithms that aim predict and classify different types

of cancers using gene expression data. One of the main

technologies that have provided large volumes of

biological data are the DNA microarrays [2]. The

datasets, on which the classification algorithms work,

contain the expression levels of thousands of genes

from a group of patients. For instance, the dataset for

the analysis of Leukemia cancer [3], consists of

expression values of 7129 genes for 72 patients. This

dataset is divided in two groups according to the

specific subtype of Leukemia cancer: AML (Acute

Myeloid Leukemia) and ALL (Acute Lymphoblastic

Leukemia). Within the group of patients with AML

subtype, there is another division corresponding to

subgroups of patients that were successful in the

treatment and those that were not successful in the

treatment. With these data, a classification algorithm

has as goals either diagnoses the specific subtype of

Leukemia, or predict the likelihood of success of

treatment.

Previous works for the classification and prognosis of

cancer have been done. Golub et al. [3], use the

“neighborhood analysis” method for the distinction of

classes, grouping the genes with similar expression

patterns. Next, using the levels of expression, and the

degree of correlation of genes, a method is applied for

each gene to assign a score associated with each of the

classes. With the sum of the scores, the winning class is

determined. The results of this method are validated

through a “cross-fold.” For the classification

experiments they used 50 “informative genes” from

Leukemia cancer dataset, obtained these previously,

achieving a total of 36 correct predictions from 38

patients. Nasimeh and Russel [4], use an algorithm to

identify biclusters, based on the mathematical method

called “rank-1 matrix approximation”, which is applied

to reduce the size of the dataset. Each bicluster is a

subset of genes and a subset of patients. The genes in a

bicluster have expression values which are correlated.

Based on the discovered biclusters, a Support Vector

Machine is used to perform the classification. The

Leukemia, Colon [5], Prostate [6], and Lung cancer

datasets [7] were used to the diagnosis experiments,

achieving a success rate of 84.72% for the Leukemia

cancer dataset. The runtime of the method was

approximately of 1 minute for obtaining each bicluster,

from a data matrix of around 20,000 genes of 100

patients. Hernández et al. [8], use three filters to

mailto:icastro@itlp.edu.mx
mailto:eluna@itlp.edu.mx

reduce the number of genes used in the classification.

The filters are: BSS/WSS, T-Statistic and Wilcoxon. After

applying the filters, the subset of genes obtained is

passed to a genetic algorithm (GA), which with the help

of an SVM, performs the final selection of genes to be

used in the classification. The Leukemia and Colon

cancer datasets were used for the experiments. With

the Leukemia dataset, a success rate of 98.61% was

obtained. It is unclear if in the final experiment

performed, were used patients’ data that were also

used in the filtering phase. None of the methods

mentioned above, have a parallel computing technique.

Our proposed method uses two algorithms to deal with

the problem of classification and prognosis of cancer.

The first is the BSS/WSS filter [9], which was used to

select the most relevant genes for classification. The

second algorithm is a Support Vector Machine [10], to

perform the classification based on selected genes by

the filter. Due SVM is unable to perform a correct

classification when the number of genes is greater than

the number of patients [11], it is necessary to reduce

the number of genes before applying the SVM for

classification or prognosis of cancer.

In the experiments performed, a success rate of 92% on

the Leukemia cancer dataset was obtained. Due to high

cost of time that this kind of analysis involves on large

volumes of data, a parallel BSS/WSS filter

implementation was done. Using CUDA technology on a

GNU/Linux Fedora environment with CUDA C, a

reduction of the execution time of approximately 18

times was achieved, with respect to a sequential

implementation on a CPU with the C programming

language. Both implementations of the filter were

performed 1000 times using different sets of patients in

each iteration.

II. DEVELOPMENT

A. BSS/WSS Filter

It has been shown that the use of BSS/WSS filter, is a

useful method in the classification and prediction of

cancer [9]. The function of this filter is to identify,

statistically, those genes that behave differently

between groups of patients of different classes.

In the filter, the selection of genes is based on the ratio

of the sums of squares differences between groups

(BSS), and within groups (WSS), calculated for each

gene . The filter’s formula is shown in (1).

 (1)

Where represents the class of the subtype of cancer

for the patient.

represents the mean expression

level of gene for all patients.

represents the mean

of expression level of gen for all patients that belong

to the class . represents the expression level of

gene for the patient . The function return

if the class of patient is equal to the class , and

otherwise.

Since our problem is to identify only two classes, and

we know in advance the range of indexes of patients of

both classes, we can omit the function

 from (1), as shown on (2).

 (2)

B. Filter implementation in CUDA

Since the formula of BSS/WSS filter is applied

independently for each gene, the parallel

implementation was designed so that each gene is

processed by a thread. Due that the CUDA device must

process 7129 genes, the algorithm was designed to run

on 14 thread´s blocks of 512 threads each one, giving a

total of 7168 threads, where the last 30 threads are not

used.

Each thread has its own ID, whose value is calculated as

shown in (3).

 (3)

Where represents the block´s dimension,

 is the ID of the thread´s block and is

the ID of the set of threads.

The Leukemia cancer dataset was loaded into memory

in a one-dimensional array, including the class labels for

each patient. Figure 1 shows the representation of the

data in a one-dimensional array.

Figure 1. Representation of the Leukemia dataset. The black

cells contain the labels of the patients, and white cells

contain the expression levels of the genes. A) The two-

dimensional Leukemia array representation. B) The

distribution of the Leukemia dataset on the CUDA device

memory, where each segment of 7130 cells correspond to

the label and genes of a patient.

In the same way, the indexes of the training patients,

used in each iteration, were stored in a one-

dimensional array. The size of this array is equal to the

number of patients multiplied by the number of

iterations to be executed. The formula used to get the

index of a patient, for a given iteration, is shown in (4).

 (4)

Where is the number of iteration, is the number of

patient, and is the number of patients

used for each iteration of the filter. The formula for get

the index of the expression level of a patient is shown in

(5).

 (5)

Where is the total of columns that has the

dataset, that is, the number of genes, plus one, for the

label. A one-dimensional array to store the results was

created. The size of the array is equal to the number of

genes plus one, multiplied by the number of iterations

to be executed. The formula for get the index to store a

result is given in (6).

 (6)

Where is the number of the iteration. The

results are real numbers that vary in the range from 0

to 3 for Leukemia cancer dataset. A result of 0, or close

to 0, is considered a poor value, and is associated to a

gene irrelevant for classification. A value close to 3 is

considered as good, and its gene associated is relevant

for the classification.

The Algorithm 1, shows the pseudocode of the CUDA

kernel.

Each thread starts getting the mean of the expression

levels of its associated gene for all patients of each

class. The mean of expression levels for all patients is

obtained too. After, the square of the mean of each

class minus the mean of gene is obtained, and is

multiplied by the number of patients in the

corresponding class. These squares are summed and

divided by the following summation. A summation of

the squared, of the expression level of the gene for

the patient minus the mean of the class of such

patient, is performed.

Algorithm 1: BSS/WSS CUDA implementation

Input: one-dimensional array of gene expression, AML
patients indexes, ALL patients indexes, # of iterations

Output: one-dimensional array with the scores obtained by
the filter for each gene
1. allocate memory on GPU and CPU for the one-

dimensional array of gene expression, AML/ALL
patients indexes and one-dimensional array for the
scores

2. fill the one-dimensional array of gene expression with
the data of the Leukemia cancer dataset

3. fill the AML/ALL arrays with the round-cross method
4. copy the one-dimensional array of gene expression and

AML/ALL patients indexes from CPU to GPU
5. invoke the CUDA kernel for perform the filter

(Algorithm 2).
6. copy back the one-dimensional array with the scores

from GPU to CPU
7. free both memories, GPU and CPU

C. Support Vector Machine

The Support Vector Machine (SVM) was introduced in

1992 [10], and is widely used in classification problems.

The SVM works through of the construction of an N-

dimensional hyperplane that is used to separate the

data of different classes of a dataset.

Through an initial set of data used as “training”, where

the classes are known in advance, the SVM creates a

function, or a mathematical model, able to separate

elements of different classes. Is recognized as “support

vectors” to the subset of data which are taken as the

basis for create the model.

Once generated the mathematical model, the test data

are entered for the classification. This process is shown

in Figure 2.

Figure 2. Process of a SVM. Gets training data, generates the

mathematical model and applies it on testing data.

In our implementation, the set of patients used as

training for the SVM, corresponds to the same patients

used in the filter. The values entered to the SVM for

training and classification, are the expression values of

the 10 “best” genes obtained by the filter. With these

data the training of the SVM was performed, and a

function or mathematical model able to separate

patients from different classes was obtained. After

building the model, the final classification tests were

performed. For these tests was selected a set of

patients whose expression data, and class, were not

used in the execution of the filter, nor in some stage

prior to these final tests. On these test patients, and

based on the generated model, the SVM estimates the

subtype of cancer of each patient. Finally, with the

information of the classes estimated by the SVM, and

with the information of the actual classes of the

patients, we calculate the success rate obtained by the

method.

The SVM functions used in this project were taken from

[13]. These functions are implemented in R

programming language, and work on GPGPU using

CUDA technology. To apply these functions, the dataset

was scaled to a range of -1 to 1. This range is the

recommended in [14]. The kernel used in the SVM was

of linear type, and its “C” parameter was set to 2.0. This

value of “C” was obtained running the script “grid.py”

that belongs to the LIBSVM library [12].

III. Experiments and Results

A. Design of the Experiment

For the tests of the BSS/WSS filter, we structured the

Leukemia cancer dataset according to the LIBSVM

format [12]. In this format the columns correspond to

the genes, and the rows to the patients. The first 25

patients have Leukemia type AML, and the last 47

patients have type ALL. The first column is reserved to

identify the class of each patient. Figure 3 shows a

representation of the structure of the Leukemia cancer

dataset.

Figure 3. Structure of the Leukemia cancer dataset.

The evaluation of the CUDA implementation consisted

in tests of 1000 iterations, performed on a set of

training data, which were selected by a method which

we called “round-cross”. In each iteration were selected

a total of 15 patients of class AML, and 27 patients of

ALL class. The first 15 patients selected of the AML class

correspond to the indexes 1 to 15 of the dataset, and

for the ALL class the indexes 26 to 52. In each iteration

was incremented, by one, the start of the indexes of the

subsets, so that, for the second iteration, the indexes of

the subset of AML patients are from 2 to 16 and from

27 to 53 for the subset of ALL patients. In Table 1, are

shown the selected sets by the “round-cross” method

for the first 5 iterations.

Table 1. The first 5 subsets of AML/ALL patients obtained

from round-cross for the BSS/WSS filter.

The experiments were performed with the following

equipment:

 Graphic card: Nvidia GeForce GTX 670 with 2GB

RAM memory, 1344 CUDA cores, compute

capability of 3.0.

 Driver version: 319.49.

 CUDA Toolkit version: 5.5.

 GCC version: 4.7.0 20120507 (Red Hat 4.7.0-5).

 Kernel version: 3.3.4-5.fc17.x86_64.

 GNU/Linux distribution: Fedora release 17

(Beefy Miracle) 64 bits.

 Processor: Intel(R) Core(TM) i5-2500 CPU @

3.30GHz.

 System ram memory: 4GB.

B. Results

The genes considered as “best” for classification, and

for which the filter assigns a higher score, have a similar

behavior for patients of the same class, and dissimilar

behavior for patients of different classes. Figure 4

shows a graph with the expression levels of the 10 best

qualified genes by the filter. It is clear that the behavior

of these 10 genes is very different for the first 25

patients, that are of type AML, with respect to the

remaining 47 patients that are of type ALL. Therefore

these 10 genes are most suitable for the classification

of subtypes of Leukemia.

Figure 4. Graph of the expression levels of the best 10 genes

qualified by BSS/WSS filter.

Figure 5 shows a graph of the expression levels of the

10 worse qualified genes by the filter. It is appreciable

that the behavior of the genes cannot distinguish

between the groups of patients with type AML from

those of type ALL. Therefore these 10 genes are not

suitable to perform the classification of subtypes of

Leukemia.

Figure 5. Graph of the expression levels of the worse 10

genes qualified by BSS/WSS filter.

In Figure 6 is shown a comparative graph of the

execution time for 1000 iterations, between the parallel

implementation with CUDA technology and the

sequential implementation with C. It is appreciable that

CUDA C had a greater performance compared to C,

resulting a difference of performance of about 18 times

faster.

0.039

0.687

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

Seconds

Programming languages

Time measuring CUDA C vs C

CUDA C C

Figure 6. Time measuring of BSS/WSS filter execution. CUDA

C vs C for 1000 iterations.

The final classification tests were performed with the

SVM, based on the 10 best genes discovered by the

filter. These tests were performed using information

from 42 patients taken as training, and 15 patients used

as test. The results show a success rate of classification

of 92%, that is, in average in each iteration, 13.8 of 15

patients of test were correctly classified.

IV. CONCLUSIONS

The use of the BSS/WSS filter is very useful for the

reduction of the size of the gene expression datasets

used for the classification of subtypes of cancer. The

significant reduction of the number of genes achieved

for the filter makes possible the use of a Support Vector

Machine, to perform the classification of cancer with an

acceptable success rate.

With the parallel implementation of the BSS/WSS filter

on GPGPU using CUDA technology, we have achieved a

significant reduction of the execution time, compared

to the sequential implementation.

As future work, we plan to implement the filters T-

Statistic and Wilcoxon in parallel. It is expected that

with the use of these two filters, together with the

BSS/WSS filter, we could achieve best success rates in

the classification. It is also proposed perform tests of

classification, for both, diagnostic and prognostic of

cancer, with others cancer datasets.

REFERENCES

[1] World Health Organization, Fact Sheet 310.

[2] Ying Lu, and Jiawei Han, “Cancer Classification Using

Gene Expression Data,” Journal Systems, vol. 28, no. 4,

2003, pp. 243─268.

[3] Golub et al., “Molecular Classification of Cancer:

Class Discovery and Class Prediction by Gene Expression

Monitoring,” Science, vol. 286, 1999, pp. 531─537.

[4] Nasimeh Asgarian, and Russell Greiner. “Using Rank-

1 Biclusters to Classify Microarray Data,”

Bioinformatics, vol. 00, 2007, pp. 1─10.

[5] U. Alon et al., “Broad patterns of gene expression

revealed by clustering analysis of tumor and normal

colon tissues probed by oligonucleotide arrays,”

Proceedings of the National Academy of Sciences of

USA, vol. 96, no. 12, 1999, pp. 6745─6750.

[6] Dinnesh Singh et al., “Gene expression correlates of

clinical prostate cancer behavior,” Cancer Cell, vol. 1,

2002, pp. 203─209.

[7] Gavin G. Gordon et al., “Translation of microarray

data into clinically relevant cancer diagnostic tests using

gene expression ratios in lung cancer and

mesothelioma,” Cancer Research, vol. 62, 2002, pp.

4963─4967.

[8] Hernández Montiel L.A., Bonilla Huerta E., and

Morales Caporal R., “A multiple-filter-GA-SVM method

for dimension reduction and classification of DNA-

microarray data,” Revista Mexicana de Ingeniería

Biomédica, vol. 32, no. 1, 2011, pp. 32─39.

[9] Sandrine Dudoit, Yee Hwa Yang, Matthew J. Callow,

and Terence P. Speed, “Statistical Methods For

Identifying Differentially Expressed Genes In Replicated

cDNA Microarray Experiments,” Statistica Sinica 12,

2002, pp. 111─139.

[10] B.E. Boser, Isabelle M. Guyon, and Vladimir N.

Vapnik, “A Training Algorithm for Optimal Margin

Classifiers,” Proceedings of the Fifth Annual Workshop

on Computational Learning Theory 5, 1991, pp.

144─152.

[11] Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin,

“A Practical Guide to Support Vector Classication,”

2010.

[12] Chih-Chung Chang, and Chih-Jen Lin, “LIBSVM: a

library for support vector machines.” ACM Transactions

on Intelligent Systems and Technology, 2:27:1--27:27,

2011.

[13] (2009) The R’s MVS website. [Online]. Available:

http://www.r-tutor.com/

[14] Part 2 of Sarle’s Neural Networks FAQ Sarle, 1997.

