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Abstract 

A parallel version of BSS/WSS (Between Sum Square-

BSS, Within Sum Square-WSS) filter using GPGPU 

(General Purpose Graphics Processing Units) is 

proposed. The application processes genetic expression 

data to select statistically relevant genes. A SVM 

(Support Vector Machine) is applied on the expression 

data of genes selected by the filter, to diagnose cancer. 

With the use of this combination of algorithms, a 

success rate of 92% in the diagnosis was achieved. With 

the parallel implementation on GPGPU with CUDA 

technology, a dramatic reduction of execution time of 

approximately 18 times compared to the sequential 

implementation on CPU was achieved. 

Keywords: genetic expression, Support Vector 

Machine, parallel programming, GPGPU, CUDA. 

I. INTRODUCTION 

Cancer is a serious and complex problem that has 

caught the attention of the scientific community and is 

among the 10 main causes of death in the world [1]. 

Among the many fronts and efforts that are being made 

to address this problem, exists the development of 

algorithms that aim predict and classify different types 

of cancers using gene expression data. One of the main 

technologies that have provided large volumes of 

biological data are the DNA microarrays [2]. The 

datasets, on which the classification algorithms work, 

contain the expression levels of thousands of genes 

from a group of patients. For instance, the dataset for 

the analysis of Leukemia cancer [3], consists of 

expression values of 7129 genes for 72 patients. This 

dataset is divided in two groups according to the 

specific subtype of Leukemia cancer: AML (Acute 

Myeloid Leukemia) and ALL (Acute Lymphoblastic 

Leukemia). Within the group of patients with AML 

subtype, there is another division corresponding to 

subgroups of patients that were successful in the 

treatment and those that were not successful in the 

treatment. With these data, a classification algorithm 

has as goals either diagnoses the specific subtype of 

Leukemia, or predict the likelihood of success of 

treatment. 

Previous works for the classification and prognosis of 

cancer have been done. Golub et al. [3], use the 

“neighborhood analysis” method for the distinction of 

classes, grouping the genes with similar expression 

patterns. Next, using the levels of expression, and the 

degree of correlation of genes, a method is applied for 

each gene to assign a score associated with each of the 

classes. With the sum of the scores, the winning class is 

determined. The results of this method are validated 

through a “cross-fold.” For the classification 

experiments they used 50 “informative genes” from 

Leukemia cancer dataset, obtained these previously, 

achieving a total of 36 correct predictions from 38 

patients. Nasimeh and Russel [4], use an algorithm to 

identify biclusters, based on the mathematical method 

called “rank-1 matrix approximation”, which is applied 

to reduce the size of the dataset. Each bicluster is a 

subset of genes and a subset of patients. The genes in a 

bicluster have expression values which are correlated. 

Based on the discovered biclusters, a Support Vector 

Machine is used to perform the classification. The 

Leukemia, Colon [5], Prostate [6], and Lung cancer 

datasets [7] were used to the diagnosis experiments, 

achieving a success rate of 84.72% for the Leukemia 

cancer dataset. The runtime of the method was 

approximately of 1 minute for obtaining each bicluster, 

from a data matrix of around 20,000 genes of 100 

patients. Hernández et al. [8], use three filters to 
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reduce the number of genes used in the classification. 

The filters are: BSS/WSS, T-Statistic and Wilcoxon. After 

applying the filters, the subset of genes obtained is 

passed to a genetic algorithm (GA), which with the help 

of an SVM, performs the final selection of genes to be 

used in the classification. The Leukemia and Colon 

cancer datasets were used for the experiments. With 

the Leukemia dataset, a success rate of 98.61% was 

obtained. It is unclear if in the final experiment 

performed, were used patients’ data that were also 

used in the filtering phase. None of the methods 

mentioned above, have a parallel computing technique. 

Our proposed method uses two algorithms to deal with 

the problem of classification and prognosis of cancer. 

The first is the BSS/WSS filter [9], which was used to 

select the most relevant genes for classification. The 

second algorithm is a Support Vector Machine [10], to 

perform the classification based on selected genes by 

the filter. Due SVM is unable to perform a correct 

classification when the number of genes is greater than 

the number of patients [11], it is necessary to reduce 

the number of genes before applying the SVM for 

classification or prognosis of cancer. 

In the experiments performed, a success rate of 92% on 

the Leukemia cancer dataset was obtained. Due to high 

cost of time that this kind of analysis involves on large 

volumes of data, a parallel BSS/WSS filter 

implementation was done. Using CUDA technology on a 

GNU/Linux Fedora environment with CUDA C, a 

reduction of the execution time of approximately 18 

times was achieved, with respect to a sequential 

implementation on a CPU with the C programming 

language. Both implementations of the filter were 

performed 1000 times using different sets of patients in 

each iteration. 

II.  DEVELOPMENT 

A.  BSS/WSS Filter 

It has been shown that the use of BSS/WSS filter, is a 

useful method in the classification and prediction of 

cancer [9]. The function of this filter is to identify, 

statistically, those genes that behave differently 

between groups of patients of different classes. 

In the filter, the selection of genes is based on the ratio 

of the sums of squares differences between groups 

(BSS), and within groups (WSS), calculated for each 

gene  . The filter’s formula is shown in (1). 

                    (1) 

Where  represents the class of the subtype of cancer 

for the  patient.  
 
represents the mean expression 

level of gene  for all patients. 
 
represents the mean 

of expression level of gen  for all patients that belong 

to the class .  represents the expression level of 

gene  for the patient . The function  return  

if the class of patient  is equal to the class , and  

otherwise. 

Since our problem is to identify only two classes, and 

we know in advance the range of indexes of patients of 

both classes, we can omit the function  

 from (1), as shown on (2). 

                                     (2) 

B.  Filter implementation in CUDA 

Since the formula of BSS/WSS filter is applied 

independently for each gene, the parallel 

implementation was designed so that each gene is 

processed by a thread. Due that the CUDA device must 

process 7129 genes, the algorithm was designed to run 

on 14 thread´s blocks of 512 threads each one, giving a 

total of 7168 threads, where the last 30 threads are not 

used. 

Each thread has its own ID, whose value is calculated as 

shown in (3). 

               (3) 

Where  represents the block´s dimension,  

 is the ID of the thread´s block and  is 

the ID of the set of threads. 

The Leukemia cancer dataset was loaded into memory 

in a one-dimensional array, including the class labels for 



each patient. Figure 1 shows the representation of the 

data in a one-dimensional array. 

 

Figure 1. Representation of the Leukemia dataset. The black 

cells contain the labels of the patients, and white cells 

contain the expression levels of the genes. A) The two-

dimensional Leukemia array representation. B) The 

distribution of the Leukemia dataset on the CUDA device 

memory, where each segment of 7130 cells correspond to 

the label and genes of a patient. 

In the same way, the indexes of the training patients, 

used in each iteration, were stored in a one-

dimensional array. The size of this array is equal to the 

number of patients multiplied by the number of 

iterations to be executed. The formula used to get the 

index of a patient, for a given iteration, is shown in (4).   

             (4) 

Where  is the number of iteration,  is the number of 

patient, and  is the number of patients 

used for each iteration of the filter. The formula for get 

the index of the expression level of a patient is shown in 

(5). 

           (5) 

Where  is the total of columns that has the 

dataset, that is, the number of genes, plus one, for the 

label. A one-dimensional array to store the results was 

created. The size of the array is equal to the number of 

genes plus one, multiplied by the number of iterations 

to be executed. The formula for get the index to store a 

result is given in (6). 

             (6) 

Where  is the number of the iteration. The 

results are real numbers that vary in the range from 0 

to 3 for Leukemia cancer dataset. A result of 0, or close 

to 0, is considered a poor value, and is associated to a 

gene irrelevant for classification. A value close to 3 is 

considered as good, and its gene associated is relevant 

for the classification. 

The Algorithm 1, shows the pseudocode of the CUDA 

kernel. 

Each thread  starts getting the mean of the expression 

levels of its associated gene for all patients of each 

class. The mean of expression levels for all patients is 

obtained too. After, the square of the mean of each 

class minus the mean of gene  is obtained, and is 

multiplied by the number of patients in the 

corresponding class. These squares are summed and 

divided by the following summation. A summation of 

the squared, of the expression level of the gene  for 

the patient  minus the mean of the class of such 

patient, is performed. 

Algorithm 1: BSS/WSS CUDA implementation 

Input: one-dimensional array of gene expression, AML 
patients indexes, ALL patients indexes,  # of iterations 

Output: one-dimensional array with the scores obtained by 
the filter for each gene 
1. allocate memory on GPU and CPU for the one-

dimensional array of gene expression, AML/ALL 
patients indexes and one-dimensional array for the 
scores 

2. fill the one-dimensional array of gene expression with 
the data of the Leukemia cancer dataset 

3. fill the AML/ALL arrays with the round-cross method 
4. copy the one-dimensional array of gene expression and 

AML/ALL patients indexes from CPU to GPU 
5. invoke the CUDA kernel for perform the filter 

(Algorithm 2). 
6. copy back the one-dimensional array with the scores 

from GPU to CPU 
7. free both memories, GPU and CPU       

 

C.  Support Vector Machine 

The Support Vector Machine (SVM) was introduced in 

1992 [10], and is widely used in classification problems. 

The SVM works through of the construction of an N-

dimensional hyperplane that is used to separate the 

data of different classes of a dataset. 

Through an initial set of data used as “training”, where 

the classes are known in advance, the SVM creates a 

function, or a mathematical model, able to separate 

elements of different classes. Is recognized as “support 



vectors” to the subset of data which are taken as the 

basis for create the model. 

Once generated the mathematical model, the test data 

are entered for the classification. This process is shown 

in Figure 2. 

 

Figure 2. Process of a SVM. Gets training data, generates the 

mathematical model and applies it on testing data. 

In our implementation, the set of patients used as 

training for the SVM, corresponds to the same patients 

used in the filter. The values entered to the SVM for 

training and classification, are the expression values of 

the 10 “best” genes obtained by the filter. With these 

data the training of the SVM was performed, and a 

function or mathematical model able to separate 

patients from different classes was obtained. After 

building the model, the final classification tests were 

performed. For these tests was selected a set of 

patients whose expression data, and class, were not 

used in the execution of the filter, nor in some stage 

prior to these final tests. On these test patients, and 

based on the generated model, the SVM estimates the 

subtype of cancer of each patient. Finally, with the 

information of the classes estimated by the SVM, and 

with the information of the actual classes of the 

patients, we calculate the success rate obtained by the 

method. 

The SVM functions used in this project were taken from 

[13]. These functions are implemented in R 

programming language, and work on GPGPU using 

CUDA technology. To apply these functions, the dataset 

was scaled to a range of -1 to 1. This range is the 

recommended in [14]. The kernel used in the SVM was 

of linear type, and its “C” parameter was set to 2.0. This 

value of “C” was obtained running the script “grid.py” 

that belongs to the LIBSVM library [12]. 

 

III.  Experiments and Results 

 

A.  Design of the Experiment 

For the tests of the BSS/WSS filter, we structured the 

Leukemia cancer dataset according to the LIBSVM 

format [12]. In this format the columns correspond to 

the genes, and the rows to the patients. The first 25 

patients have Leukemia type AML, and the last 47 

patients have type ALL. The first column is reserved to 

identify the class of each patient. Figure 3 shows a 

representation of the structure of the Leukemia cancer 

dataset. 

 

 

Figure 3. Structure of the Leukemia cancer dataset. 

 

The evaluation of the CUDA implementation consisted 

in tests of 1000 iterations, performed on a set of 

training data, which were selected by a method which 

we called “round-cross”. In each iteration were selected 

a total of 15 patients of class AML, and 27 patients of 

ALL class. The first 15 patients selected of the AML class 

correspond to the indexes 1 to 15 of the dataset, and 

for the ALL class the indexes 26 to 52. In each iteration 

was incremented, by one, the start of the indexes of the 

subsets, so that, for the second iteration, the indexes of 

the subset of AML patients are from 2 to 16 and from 

27 to 53 for the subset of ALL patients. In Table 1, are 

shown the selected sets by the “round-cross” method 

for the first 5 iterations. 



Table 1. The first 5 subsets of AML/ALL patients obtained 

from round-cross for the BSS/WSS filter. 

 

The experiments were performed with the following 

equipment: 

 Graphic card: Nvidia GeForce GTX 670 with 2GB 

RAM memory, 1344 CUDA cores, compute 

capability of 3.0. 

 Driver version: 319.49. 

 CUDA Toolkit version: 5.5. 

 GCC version: 4.7.0 20120507 (Red Hat 4.7.0-5). 

 Kernel version: 3.3.4-5.fc17.x86_64. 

 GNU/Linux distribution: Fedora release 17 

(Beefy Miracle) 64 bits. 

 Processor: Intel(R) Core(TM) i5-2500 CPU @ 

3.30GHz. 

 System ram memory: 4GB. 

 

B.  Results 

The genes considered as “best” for classification, and 

for which the filter assigns a higher score, have a similar 

behavior for patients of the same class, and dissimilar 

behavior for patients of different classes. Figure 4 

shows a graph with the expression levels of the 10 best 

qualified genes by the filter. It is clear that the behavior 

of these 10 genes is very different for the first 25 

patients, that are of type AML, with respect to the 

remaining 47 patients that are of type ALL. Therefore 

these 10 genes are most suitable for the classification 

of subtypes of Leukemia. 

 

Figure 4. Graph of the expression levels of the best 10 genes 

qualified by BSS/WSS filter. 

Figure 5 shows a graph of the expression levels of the 

10 worse qualified genes by the filter. It is appreciable 

that the behavior of the genes cannot distinguish 

between the groups of patients with type AML from 

those of type ALL. Therefore these 10 genes are not 

suitable to perform the classification of subtypes of 

Leukemia. 

 

Figure 5. Graph of the expression levels of the worse 10 

genes qualified by BSS/WSS filter. 

In Figure 6 is shown a comparative graph of the 

execution time for 1000 iterations, between the parallel 

implementation with CUDA technology and the 

sequential implementation with C. It is appreciable that 

CUDA C had a greater performance compared to C, 

resulting a difference of performance of about 18 times 

faster. 
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Figure 6. Time measuring of BSS/WSS filter execution. CUDA 

C vs C for 1000 iterations. 

The final classification tests were performed with the 

SVM, based on the 10 best genes discovered by the 

filter. These tests were performed using information 

from 42 patients taken as training, and 15 patients used 

as test. The results show a success rate of classification 

of 92%, that is, in average in each iteration, 13.8 of 15 

patients of test were correctly classified. 

IV.  CONCLUSIONS 

The use of the BSS/WSS filter is very useful for the 

reduction of the size of the gene expression datasets 

used for the classification of subtypes of cancer. The 

significant reduction of the number of genes achieved 

for the filter makes possible the use of a Support Vector 

Machine, to perform the classification of cancer with an 

acceptable success rate. 

With the parallel implementation of the BSS/WSS filter 

on GPGPU using CUDA technology, we have achieved a 

significant reduction of the execution time, compared 

to the sequential implementation. 

As future work, we plan to implement the filters T-

Statistic and Wilcoxon in parallel. It is expected that 

with the use of these two filters, together with the 

BSS/WSS filter, we could achieve best success rates in 

the classification. It is also proposed perform tests of 

classification, for both, diagnostic and prognostic of 

cancer, with others cancer datasets. 
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